Agonistic encounters in aged male mouse potentiate the expression of endogenous brain NGF and BDNF: possible implication for brain progenitor cells' activation.

نویسندگان

  • Marco Fiore
  • Tiziana Amendola
  • Viviana Triaca
  • Paola Tirassa
  • Enrico Alleva
  • Luigi Aloe
چکیده

The condition of dominance or submission following agonistic encounters in the adult male mouse is known to differentially affect brain nerve growth factor, a neurotrophin playing a role in brain remodeling, in the fine tuning of behaviour and in the regulation of the basal forebrain cholinergic neurons. During development and adult life nerve growth factor regulates brain expression of neurotransmitters and the stimulation of progenitor cells (stem cells) which, under different external stimuli, may differentiate into neuronal and/or glial cells promoting the recovery of the injured brain. However, little information is available for the aged brain. Thus in the present study we investigated the effect of the social status ('dominance' vs. 'submission') in the aged mouse on the presence of nerve growth factor, brain-derived neurotrophic factor, choline acetyltransferase, neuropeptide Y and progenitor cells of selected brain regions. We found that aged dominant mice showed increased brain-derived neurotrophic factor in the subventricular zone and hippocampus and increased choline acetyltransferase in the septum and basal nuclei, which were associated with increased presence of progenitor cells in the subventricular zone. Conversely, in aged subordinate mice the data showed a marked brain increase in nerve growth factor in the subventricular zone and hippocampus, choline acetyltransferase in the septum and basal nuclei and neuropeptide Y in the hippocampus and parietal cortex. The possible functional implications of these findings are discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Effect of Endurance Exercise Training on the Expression of Brain-Derived Neurotrophic Factor (BDNF) and Nerve Growth Factor (NGF) Genes of the Cerebellum in Diabetic Rat

Objective: Few studies have been conducted on variations of the central nervous system of diabetic patients and much fewer investigations done on the cerebellum of diabetes patients. The current research aims to investigate the effect of endurance training on neurotrophic factors affecting the cerebellum in the diabetic rat. Materials and Methods: This study is experimental.Twenty Wistar rat w...

متن کامل

Effect of selegiline on neural stem cells differentiation: a possible role for neurotrophic factors

Objective(s): The stimulation of neural stem cells (NSCs) differentiation into neurons has attracted great attention in management of neurodegenerative disease and traumatic brain injury. It has been reported that selegiline could enhance the morphologic differentiation of embryonic stem cells. Therefore this study aimed to investigate the effects of selegiline on NSCs differentiation with focu...

متن کامل

Comparing the effect of high intensity interval training and continuous training on BDNF, GDNF and NGF in hippocampus of C57BL/6 male mice

Introduction: Identifying the factors that influence on the uptake of Neurotrophins is an important goal for brain's health and function. There is some evidence that long-term exercise improves brain function. However, the effects of exercise intensities on the brain remain is unclear. Therefore, the purpose of this study was to compare the effects of high intensity interval (HIIT) and continuo...

متن کامل

تغییرات وابسته به سن برخی نروتروفین های مغز و فعالیت لوکوموتور در یک مدل حیوانی

Background: Accumulative evidences suggest that any change in brain neurotrophins can be involved in brain development and function. However, little is known about age related alteration of the neurotrophins. In this experimental study, we investigated the adulthood changes in the locomotor activity and the levels of Nerve Growth Factor (NGF) and Brain Derived Neurotropic Factor (BDNF) in selec...

متن کامل

Brain NGF and EGF administration improves passive avoidance response and stimulates brain precursor cells in aged male mice.

Nerve growth factor (NGF) has been shown to improve damage in spatial cognition following aging, whereas epidermal growth factor (EGF) is important in brain cell proliferation. It is also known that the adult mammalian central nervous system contains persistent progenitor cells with characteristics of stem cells. These studies suggest that under appropriate external stimuli progenitor cells may...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The European journal of neuroscience

دوره 17 7  شماره 

صفحات  -

تاریخ انتشار 2003